Forskellen mellem parallelogram og rombe

Indholdsfortegnelse:

Forskellen mellem parallelogram og rombe
Forskellen mellem parallelogram og rombe

Video: Forskellen mellem parallelogram og rombe

Video: Forskellen mellem parallelogram og rombe
Video: Areal af parallelogram og trapez 2024, November
Anonim

Parallelogram vs Rhombus

Parallelogram og rombe er firkanter. Geometrien af disse figurer var kendt af mennesket i tusinder af år. Emnet er eksplicit behandlet i bogen "Elementer" skrevet af den græske matematiker Euclid.

Parallelogram

Parallelogram kan defineres som den geometriske figur med fire sider, med modsatte sider parallelle med hinanden. Mere præcist er det en firkant med to par parallelle sider. Denne parallelle natur giver mange geometriske karakteristika til parallelogrammerne.

Billede
Billede
Billede
Billede
Billede
Billede
Billede
Billede

En firkant er et parallelogram, hvis der findes følgende geometriske karakteristika.

• To par modstående sider er lige lange. (AB=DC, AD=BC)

• To par modstående vinkler er lige store. ([latex]D\hat{A}B=B\hat{C}D, A\hat{D}C=A\hat{B}C[/latex])

• Hvis de tilstødende vinkler er supplerende [latex]D\hat{A}B + A\hat{D}C=A\hat{D}C + B\hat{C}D=B\hat {C}D + A\hat{B}C=A\hat{B}C + D\hat{A}B=180^{circ}=\pi rad[/latex]

• Et par sider, som er modsat hinanden, er parallelle og lige lange. (AB=DC & AB∥DC)

• Diagonalerne halverer hinanden (AO=OC, BO=OD)

• Hver diagonal deler firkanten i to kongruente trekanter. (∆ADB ≡ ∆BCD, ∆ABC ≡ ∆ADC)

Yderligere er summen af kvadraterne på siderne lig med summen af kvadraterne af diagonaler. Dette omtales nogle gange som parallelogramloven og har udbredte anvendelser inden for fysik og teknik. (AB2 + BC2 + CD2 + DA2=AC2 + BD2)

Hver af ovenstående karakteristika kan bruges som egenskaber, når det er fastslået, at firkanten er et parallelogram.

Areal af parallelogrammet kan beregnes ved produktet af længden af den ene side og højden til den modsatte side. Derfor kan areal af parallelogrammet angives som

Areal af parallelogram=basis × højde=AB×h

Billede
Billede
Billede
Billede

Arealet af parallelogrammet er uafhængigt af formen på det individuelle parallelogram. Det afhænger kun af længden af basen og den vinkelrette højde.

Hvis siderne af et parallelogram kan repræsenteres af to vektorer, kan arealet opnås ved størrelsen af vektorproduktet (krydsproduktet) af de to tilstødende vektorer.

Hvis siderne AB og AD er repræsenteret ved henholdsvis vektorerne ([latex]\overhøjrepil{AB}[/latex]) og ([latex]\overhøjrepil{AD}[/latex]), arealet af parallelogram er givet af [latex]\venstre | \overrightarrow{AB}\ gange \overrightarrow{AD} right |=AB\cdot AD \sin \alpha [/latex], hvor α er vinklen mellem [latex]\overhøjrepil{AB}[/latex] og [latex]\overhøjrepil{AD}[/latex].

Følgende er nogle avancerede egenskaber ved parallelogrammet;

• Arealet af et parallelogram er dobbelt så stort som arealet af en trekant skabt af en hvilken som helst af dens diagonaler.

• Parallelogrammets areal er delt i to af en linje, der går gennem midtpunktet.

• Enhver ikke-degenereret affin transformation tager et parallelogram til et andet parallelogram

• Et parallelogram har rotationssymmetri af orden 2

• Summen af afstandene fra ethvert indre punkt i et parallelogram til siderne er uafhængig af punktets placering

Rhombus

En firkant med alle sider er lige lange er kendt som en rombe. Det er også navngivet som en ligesidet firkant. Det anses for at have en diamantform, der ligner den i spillekortene.

Billede
Billede
Billede
Billede
Billede
Billede
Billede
Billede

Rhombus er også et speci altilfælde af parallelogrammet. Det kan betragtes som et parallelogram med alle fire sider lige. Og den har følgende særlige egenskaber, ud over egenskaberne for et parallelogram.

• Rombens diagonaler halverer hinanden i rette vinkler; diagonaler er vinkelrette.

• Diagonalerne halverer de to modsatte indre vinkler.

• Mindst to af de tilstødende sider er lige lange.

Arealet af romben kan beregnes på samme måde som parallelogrammet.

Hvad er forskellen mellem Parallelogram og Rhombus?

• Parallelogram og rombe er firkanter. Rhombus er et speci altilfælde af parallelogrammerne.

• Arealet af enhver kan beregnes ved hjælp af formlen base ×højde.

• Diagonalerne i betragtning;

– Parallelogrammets diagonaler halverer hinanden, og halverer parallelogrammet for at danne to kongruente trekanter.

– Rombens diagonaler halverer hinanden i rette vinkler, og de dannede trekanter er ligesidede.

• I betragtning af de indre vinkler;

– Modstående indre vinkler af parallelogrammet er lige store. To tilstødende indvendige vinkler er supplerende.

– De indre vinkler af romben er halveret af diagonalerne.

• I betragtning af siderne;

– I et parallelogram er summen af kvadraterne på siderne lig med summen af kvadraterne på diagonalen (parallelogramloven).

– Da alle fire sider er lige store i en rombe, er fire gange kvadratet af en side lig med summen af kvadraterne på diagonalen.

Anbefalede: